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Objective — In this paper, the current neuroimaging literature is
reviewed with regard to characteristic findings in mild cognitive
impairment (MCI). Particular attention is drawn to the possible
value of neuroimaging modalities in the prediction and early
diagnosis of Alzheimer’s disease (AD). Methods — First, the
potential contribution of neuroimaging to an early, preclinical
diagnosis of degenerative disorders is discussed at the background of
our knowledge about the pathogenesis of AD. Second, relevant
neuroimaging studies focusing on MCI are explored and
summarized. Neuroimaging studies were found through Medline
search and by systematically checking through the bibliographies of
relevant articles. Results — Structural volumetric magnetic resonance
imaging (MRI) and positron emission tomography (PET)/single
photon emission tomography (SPECT) are currently the most
commonly used neuroimaging modalities in studies focusing on MCI.
There were considerable variations in demographical and clinical
characteristics across studies. However, significant hippocampal and
entorhinal cortex volume reductions were consistently found in
subjects with MCI as compared with cognitively unimpaired
controls. While hippocampal and entorhinal cortex atrophy in
subjects with MCI are also well-established risk factors for the
development of AD, these measures cannot be regarded as being of
high predictive value in an individual case. Evidence for other typical
neuroimaging changes in MCI is still scarce. In PET and SPECT
studies, reduced blood flow and/or glucose metabolism in
temporoparietal association areas, posterior cingulate and
hippocampus were associated with a higher risk of progressive
cognitive decline in MCI. In quantitative electroencephalogram
(QEEQG), low beta, high theta, low alpha and slowed mean
frequency were associated with development of dementia.
Conclusions — Existing studies suggest that neuroimaging measures
have the potential to become valuable tools in the early diagnosis of
AD. To establish their value in routine use, larger studies, preferably
with long prospective follow-up are needed.
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The general idea of a border zone of impair-

*Throughout this paper, the designation mild cognitive
impairment (MCI) is used as a generic term for all cognitive
changes observed in ageing that are insufficient to meet
dementia criteria. When reference is made to one of the specific
concepts named MCI (such as MCI according to Zaudig, MCI
according to Petersen), this is made clear in the text.
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ment between age-related cognitive decline and
clinically diagnosed dementia is not new, begin-
ning with concepts such as ‘vorzeitige Versa-
genzustdnde’ (‘premature failure conditions’) (1)
in the German psychiatric literature or Krals
‘benign senescent forgetfulness’ (2). Such ideas



were first crystallized conceptually in 1982 as the
mildly impaired stages of the Global Deterior-
ation Scale (3), the Clinical Dementia Rating scale
(4) and the category ‘minimal dementia’, derived
from CAMDEX in 1986 (5).

The potential value of neuroimaging in the
‘grey zone’ between normal aging and dementia
concerns two essential aspects. First, neuroimag-
ing modalities provide the unique facility to
detect age- and disease-related changes in the
human brain and to monitor their progression
in vivo. This is possible for both morphological
(structural) and functional changes, and it may
improve our understanding of the physiology of
aging and the pathogenesis of dementia diseases.
Second, neuroimaging mild cognitive in impair-
ment (MCI) may facilitate early diagnoses of
dementia disorders. Early diagnosis of dementia
disorders with respect to neuroimaging tech-
niques refers to the ability to diagnose the
disease at a very early stage, preferably before
symptoms are so clear that a diagnosis can be
made, i.e. before a dementia syndrome is appar-
ent. As Alzheimer’s disease (AD) is the most
common cause of progressive cognitive deficits in
old age, and new treatment strategies are being
developed for AD [for review, see Jelic &
Winblad (6)], current research on MCI has
particularly aimed toward the detection of pre-
clinical AD. In contrast, subjects in preclinical
stages of other dementia disorders have not yet
been studied systematically.

Despite a growing interest of neuroimaging
researchers in the field of aging and AD research,
and despite fascinating methodological advances
in recent years, clinical diagnostic criteria and
investigation guidelines for dementia disorders do
not usually include neuroimaging measures. A
recent evidence-based consensus report recom-
mended only the use of structural neuroimaging
with either noncontrast computer tomography
(CT) or magnetic resonance imaging (MRI) scan
in the routine initial evaluation of patients
with suspected dementia. Linear or volumetric
MR or CT measurement strategies for the diag-
nosis of AD, as well as single photon emission
tomography (SPECT) and/or positron emission
tomography (PET) were not recommended for
routine use because of insufficient data on
validity (7).

In this paper, the current neuroimaging litera-
ture is reviewed with regard to characteristic
findings in MCI. Particular attention is drawn to
the possible value of neuroimaging modalities in
the prediction and early diagnosis of AD.

Neuroimaging in MCI

Theoretical considerations. Is it possible to diagnose
a degenerative disorder before the appearance of
clinical symptoms?

In contrast to physiological age-related changes,
AD is believed to be the most common cause of
pathological and progressive cognitive impairment
in old age. Therefore, it may be worthwhile to
discuss the theoretical possibilities to diagnose AD
in its early stages, i.e. before the onset of clear
clinical symptoms.

Preconditions for an early detection of a degenerative disorder

The potential of a procedure to detect a dementia
disorder is based on the following:

e the ability to detect a specific pathological
feature of the disease; and/or

e the ability to detect a feature that is closely
related to early symptoms of the disease.

The ability to detect a specific pathological feature of
the disease — AD is defined by its histopathology.
Pathological diagnostic criteria for AD are usually
based on the findings of senile plaques (SP) and
neurofibrillary tangles (NFT) in predefined age-
adjusted quantities. Routine neuroimaging proce-
dures to date are not able to visualize directly
histopathological changes. However, the patholo-
gical features — in particular, the regional NFT
count in the hippocampus — have been shown to
correlate with atrophy measured by CT (8) and
MRI (9), as well as with the regional metabolic rate
of glucose (rMRG) as measured by PET (10). It
can be theoretically assumed that metabolic and
blood flow changes in the association areas, as seen
in PET and SPECT, are associated with plaque
pathology, although this hypothesis could not be
proved by the one study looking at it (10). SP and
NFT seem to accumulate years to decades before
symptoms become apparent (11), which is another
important precondition for our ability to detect the
disease when still nonsymptomatic. Furthermore,
the accumulation of NFT in particular seems to
follow a predictable hierarchical pattern (11).
Based on large autopsy series, Braak and Braak
proposed a six-stage model of AD (11). According
to this model, NFT first appear in the transen-
torhinal and entorhinal cortices and occasionally in
the hippocampus (transentorhinal stages), followed
by more severe NFT pathology in the transentorh-
inal cortex and hippocampus and occasional NFT
in the neocortex in stages 3 and 4 (limbic stages). In
stages 5 and 6, numerous tangles appear in all
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neocortical association areas and also in the
primary sensory areas (isocortical stages). Demen-
tia is present with high certainty when NFT appear
in the neocortical association cortices. SP show a
less regular distribution but a certain preponder-
ance in neocortical association areas has been
noted (11). Based on this model, and on the
aforementioned correlations between regional
NFT count and atrophy in limbic structures, it
can be expected that early changes in brain
structure and function, in particular in limbic
structures, can be detected by neuroimaging
procedures in preclinical stages of AD.

The ability to detect a feature that is closely related to
early symptoms of the disease — What causes the
cognitive symptoms in AD? Despite being contro-
versially discussed, it has been shown that NFT
and possibly SP correlate with cognitive function
(12). Figure 1 was derived from recently published
findings of the Nun study (13). It shows the
association between Braak stages, i.e. NFT severity
(post-mortem) and cognitive state assessed only a
few months before death. Despite a moderate
overall correlation (r = 0.59), there is a notable
variation of cognitive states beyond the Braak
stages, particularly in entorhinal and limbic stages,
which has also been found in other studies (14). A
possible explanation is that clinical symptoms in
AD are not directly caused by the deposition of
amyloid or formation of tangles. It has been
suggested that the loss of neurons (particularly
synapses) is more directly related to cognitive
decline than plaques and tangles (15). Atrophy of
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Figure 1. Correlations between neuropathological changes
and cognitive state. Braak and Braak stages (NFT severity)
and cognitive state in 130 cases from the Nun Study. Modi-
fied/ recalculated from (13). MCI in this figure is defined as
evidence of isolated memory impairment or memory
impairment plus one or more other cognitive domains in the
absence of dementia. The correlation between Braak stage and
six cognitive states in this study was r = 0.59. Only subjects
that were free from cerebral infarcts and from other neuro-
pathological conditions that could have caused cognitive
decline were included in this sample.
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brain tissue can be caused by shrinkage or death of
neurons, loss of axons and dendrites or shrinkage
of fibre tracts. All these have been implicated in
the atrophy of medial temporal lobe structures that
occurs in AD. Neuron loss in AD predilection
areas was reported to be as high as 87% in
subregions of the hippocampus (16) and up to 60%
in the entorhinal cortex (17), even in early disease
stages. However, atrophy of the hippocampus may
also occur in a number of other conditions, such as
hippocampal sclerosis caused by ischaemic vascu-
lar damage. It is likely that the (nonspecific)
functional and structural changes detected by
neuroimaging are more closely correlated with
cognitive symptoms than theoretically defined
‘specific’ disease markers. Furthermore, regional
metabolic rates of glucose metabolism in PET have
been shown to be particularly sensitive to loss of
neuronal and synaptic function (18), which is likely
to occur in the presence of AD, but which may also
be caused by other conditions (Table 1).

Theoretical limitations for an early detection of
neurodegenerative disorders

Strategies to detect ‘specific’ pathological features
of AD in vivo, such as plaques and tangles, are
currently under development and may become
available as clinical methods in the near future (19).

However, some obvious limitations of this
approach have to be discussed. Despite the defini-
tion of AD via histopathological changes, the
specificity of plaques and tangles can be ques-
tioned. Plaques and tangles are not refined to AD,
but may also occur in other degenerative disorders.
Furthermore, plaques and tangles show a strong
age-related increase in frequency (11). The delin-
eation between age-related and disease-specific
changes remains an unresolved problem in AD
research. While often cited as the ‘gold standard’ of
diagnosis, it has to be noted that pathological
criteria themselves are rather quantitative than
qualitative (12) (Table 2).

Figure 1 shows the overall validity, but also the
limits of clinicopathological correlations in cases
that were selected to represent ‘pure’ AD cases.

Table 1 Synopsis 1

Preconditions for an early detection of a degenerative disorder (example, AD)

o The disease has a long preclinical phase (1) and is distinct
from physiological aging [?]
e The morphological and functional changes follow a characteristic pattern
with a predictable chronological sequence (12)
o Neuroimaging findings adequately reflect pathologic morphological changes (9)




Table 2 Synopsis 2

Limitations for an early detection of a degenerative disorder (example, AD)

o Plaques and tangles are not specific for AD (152)

o Histopathological “markers' by which the disease is defined are quantitative
rather than qualitative (11)

e Brain reserve mechanisms (20

o Atypical cases/order violations from the supposed stageing models (14)

o Clinicopathological correlations become weaker with advancing age (152)

Why do some individuals with relatively little AD
pathology succumb to clinical dementia, while
others with advanced AD pathology avoid the
clinical manifestation of dementia? Answers have
to be sought in individual variations of reserve
capacity against AD pathology. In addition to
constitutional reserve markers, such as genetic
factors, age and brain volume (20), co-occurrant
pathological conditions, primarily cerebrovascular
lesions (21), may alter the individual reserve
capacity. Such factors have to be considered by
neuroimaging studies in order to improve the
accuracy of diagnostic and prognostic models.
Furthermore, atypical forms of AD and order
violations to the proposed staging model have been
described on both a clinical and neuropathological
level (14). These findings raise the further question
of just how commonly patients with AD might
have atypical presentations with prominent early
deficits other than episodic memory (22). Aware-
ness of such atypical presentations in AD is
certainly needed to identify the complete spectrum
of potentially treatable cases.

Review of the literature
Methods

This section is a review of neuroimaging studies in
MCI that were found through a Medline search
and by systematically checking through the biblio-
graphies of relevant articles published in English.
The major criterion for the inclusion was that the
main focus of the study was on MCI. All concepts
that are discussed by Palmer et al. in this Supple-
ment (23) were considered as MCI. In addition,
studies that defined MCI as subjective memory
complaints without evidence for dementia in clinic-
based settings were also considered. Studies that
included ‘at risk’ subjects merely on the ground of
theoretical considerations (such as background of
a positive family history for AD, ApoE E4 carriers,
etc.) were not considered. All neuroimaging tech-
niques were included, but the focus is on the
most widely available imaging techniques, i.e.
structural MRI and CT, SPECT, PET and

Neuroimaging in MCI

electroencephalogram (EEG). In addition, signifi-
cant publications concerning the theoretical
background of neuroimaging findings in MCI,
primarily studies focusing on early changes in
Alzheimer’s disease and other dementia disorders,
have also been used in this review.

Results

A total of 52 neuroimaging studies comprising a
total of 1504 subjects with MCI were identified as
the core studies (published until October 2002).
They assessed cross-sectional characteristics of
MCI in comparison with normal controls (33
studies) and/or studied progression of cognitive
symptoms in nondemented subjects, largely defined
as MCI, longitudinally (25 studies). Eight studies
were considered as both cross-sectional and longi-
tudinal study. In two instances, study populations
and methods from two studies originating from the
same centre overlapped completely. In these cases,
only one study was considered. Considerable
overlap (>50%) was present between study pop-
ulations in five publications from two different
centres (24-28). Partial overlap between study
populations was known for further five publica-
tions and may be suspected for a number of
publications originating from the same research
groups. Hence, the total number of studied subjects
with MCI in neuroimaging studies rather overes-
timates the true figures.

Cross-sectional studies focusing on MCI in
comparison with normal controls are summarized
in Tables 3 and 4. Longitudinal studies in MCI
subjects and their main results are listed in Table 5.

Study samples, designs and research focus

Study samples — The diagnostic criteria used for
MCI in the core studies are listed in Tables 3-5.
The majority of studies was based on memory
clinic settings and used clinical staging procedures
such as the Global Deterioration Scale (GDS) (3)
or Clinical Dementia Rating (CDR) scale (4).
Eight studies used the related concept of (amnestic)
MCI (29). Very few studies defined their subjects
primarily via statistical approaches, based on
recommended cut-offs on neuropsychological tests,
as for age-associated memory impairment (AAMI)
or age-associated cognitive decline (AACD). In
many of the studies, subjects were highly selected
with regard to fulfilling criteria for ‘primary
degenerative MCI’ (30).

There was a striking inhomogeneity with
regard to demographic characteristics, in partic-
ular age, both within studies (not shown) and
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between studies. The mean Mini-Mental State
Examination (MMSE) score in MCI groups
averaged 26-27, and ranged between 22.6 in an
elderly population-based sample with minimal
dementia (31) and 29.2 in a population-based
convenience sample.

Beyond the gross distinction of longitudinal and
cross-sectional study designs, a number of differ-
ences were found.

Cross-sectional designs, comparison between MCI
and normal controls — (1) The majority of cross-
sectional studies compared MCI and normal con-
trols, and based the MCI ‘diagnosis’ on a single
examination. (2) Two studies defined MCI longi-
tudinally as subjects remaining stable MCI over
time (24, 25). (3) Two studies defined MCI
retrospectively as patients who presented initially
with mild cognitive deficits which later progressed
to dementia, i.e. MCI was confirmed to be
‘preclinical AD’ (32, 33).

Longitudinal study designs — (1) The majority of
studies enrolled MCI subjects at baseline and then
compared MCI subjects with progressive cognitive
deficits (PMCI) (defined as progression to demen-
tia/AD/other disorder) to MCI subjects remaining
stable (SMCI). (2) Some studies used only PMCI
subjects from their baseline group and compared
them with normal controls (32, 33). (3) Three
studies used originally nondemented, and/or cog-
nitively normal subjects and followed them longi-
tudinally until cognitive decline occurred (defined
as GDS 3 or higher, or CDR 0.5 or higher) (34-36).
Design (1) should be considered to be clinically
most useful design. Design (3) is interesting with
regard to the early pathogenesis of cognitive
decline.

Study aims — Subjects with MCI in most studies
were selected to represent cases in which cognitive
deficits are most likely to be caused by AD.
Consequently, the studies have been largely
focused on the detection of the functional and
morphological epiphenomena of the degenerative
process in subjects that were highly selected with
regard to fulfilling criteria for ‘primary degenerat-
ive MCI’ (30). Such an approach does not fully
reflect the everyday clinical situation. However,
with regard to the contribution of neuroimaging to
an early diagnosis of AD, such clinical studies allow
estimations of the sensitivity and specificity of
neuroimaging methods as well as comparison with
other diagnostic tools, for example clinical assess-
ments and screening tests, neuropsychology, biolo-
gical markers, and other neuroimaging methods.

Neuroimaging in MCI

Neuroimaging strategies used in MCI

The majority of studies used structural neuroimag-
ing, mainly based on quantitative volumetric MRI
with region-of-interest (ROI) analyses (17 cross-
sectional, 12 longitudinal studies). Sixteen studies
used PET or SPECT (10 longitudinal studies).
Four of the 16 studies combined structural and
functional facilities (27, 37-39). Nine EEG (inclu-
ding ERP) studies were identified (four longitud-
inal). Seven studies used new methods, such as
proton magnetic resonance spectrocopy ('"H MRS)
(three studies), magnetization transfer imaging
(MTI) (two studies), unbiased voxel-based morph-
ometry, and assessment of regional diffusivity of
water on MRI based on MRI. We did not find
published articles that used functional MRI expli-
citly in MCI patients, but promising work seems to
be under way (40, 41).

Synopses 3 and 4 (Tables 6 and 7) give a brief
overview of the methods used in MCI neuroimag-
ing studies and refer to further texts regarding the
techniques.

Neuroimaging findings in MCI

The core studies focusing on MCI that were
identified are listed and their designs and results
briefly summarized in Tables 3-5.

Discussion
Structural neuroimaging findings in early AD and MCI

Theoretically, any neuroimaging parameter that
has been shown to differ between demented and
normal control subjects is of potential value for the
characterization of MCI. On the basis of Braak-
and-Braak staging, structural and functional chan-
ges in preclinical AD can be expected in the
entorhinal cortex, the hippocampus, and other
limbic structures, followed by changes in neocor-
tical association areas. Since the first pathological
changes concern the projection neurons in the
parahippocampal gyrus (11), early functional
and possibly structural changes may also occur in
the association areas to which these neurons
project (42).

Medial temporal lobe — The broad, initial recogni-
tion of the superior value of hippocampal forma-
tion atrophy to detect AD (43) and to predict
dementia in nondemented subjects (44) was based
on studies using relatively simple assessments from
CT studies. At the background of the selective
vulnerability of the limbic system in AD and the
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Table 6 Synopsis 3

Modality Characterization, advantages, disadvantages

Structural
MRI (153)

Routine clinical tool (exclusionary approach), good availability,
highest spatial resolution of all imaging facilities <1 mm, high
potential as research tool, numerous other MR modifications,
including structural sequences to focus on tissue
characteristics, functional MRI, MR spectroscopy, relatively
high costs, noninvasive

CT (153) Routine clinical tool (exclusionary approach), widely available,
spatial resolution 1-5 mm, low costs, limited grey—white
matter contrast, noninvasive

Promising research tool with a wide spectrum of possible
applications, widely available, spatial resolution about 1 cm,
low temporal resolution, requires i.v. application of
radioactive tracer substance

As SPECT, even wider spectrum of applications, higher spatial
and temporal resolution than SPECT, expensive, requires
radioactive tracer

Routine clinical and research tool, high temporal, low spatial
resolution, widely available, cheap, noninvasive

SPECT (154)

PET (119)

EEG (106)

Table 7 Synopsis 4

Commonly used assessment techniques in structural neuroimaging

o volumetric /planimetric (quantitative): manual outlining, automated
segmentation of brain structures

e simple linear measurements

o qualitative /semiquantative visual assessments (rating scales
for medial temporal lobe atrophy and white matter lesions)

Comment: The diagnostic value of simple linear measurements /rating scales may
be comparable with more accurate, but extremely time-consuming manual
segmentation strategies [for review, see (153)].

early disturbance of memory functions in AD,
structural neuroimaging studies in MCI have been
largely focused on limbic structures, primarily
the hippocampus, the entorhinal cortex, and
amygdala.

Hippocampal and entorhinal cortex atrophy are
the most consistent cross-sectional findings in MCI
(Tables 3 and 4). Although the study samples
differed with regard to image protocols, demogra-
phic measures, MCI definitions and type of setting,
studies based on hippocampal volumetry reported
strikingly homogeneous findings: the hippocampal
volume reduction in MCI subjects ranged between
9% and 15% relative to normal controls (37, 45—
48) in the majority of studies (Tables 3 and 4).
Only two neuroimaging studies (Tables 3 and 4)
failed to find significant cross-sectional group
differences between MCI and normal controls
(25, 31). In comparison, in questionably and
mildly demented subjects, who were presumed to
have early AD, hippocampal volume reductions
ranged between 18% (49) and 38% (50), with one
exception of a study comprising a very small
sample (38). In contrast, subjects with AAMI,
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which has been defined as a mild and supposedly
benign memory impairment, did not demonstrate
a significant hippocampal volume reduction when
compared with normal controls (51-53). Two
population-based studies, which involved rather
unselected community dwelling subjects with a
cognitive continuum, concluded that hippocampal
volumetry may be useful in detecting elderly
subjects with MCI (54) and in predicting the
development of dementia (31).

Regarding the entorhinal cortex, there is a
greater variation of findings. Studies measuring
the anterior parahippocampal gyrus including
white matter usually did not find significant differ-
ences between controls and MCI. Studies measur-
ing the entorhinal cortex directly reported
significant reductions of between 13% and 32%
(25, 47, 48, 55) (Tables 3 and 4). Despite the
theoretical rationale for the superiority of ento-
rhinal measurements to distinguish MCI from
normal controls, this could not be confirmed by
two studies out of four studies which combined
entorhinal and hippocampal measurements (48,
55). The visualization of entorhinal cortex on MRI
is difficult and often obscured by anatomic ambi-
guity and imaging artefact due to magnetic sus-
ceptibility effects at the interface between petrous
bone and the base of the brain (55). It has been
suggested that because of these methodological
difficulties, hippocampal volumetry might be pref-
erable (55, 56).

While results in patients with mild AD (57, 58)
and neuropathological findings (12) indicate an
early involvement of the amygdala in AD, this
structure has rarely been examined as a separate
structure in subjects with MCI. One recent report
suggested a possible prognostic value of the amy-
gdala in MCI (26). In two studies using subjects
with AAMI, no significant amygdaloid volume
reduction compared with normal controls were
found. In contrast, two out of four studies in
patients with very mild AD revealed significant
reductions, which ranged between 20 and 39%
(57, 58). Of the two negative studies, one reported a
(nonsignificant) mean reduction by —14% to —18%
for left and right amygdala, respectively. Similar to
the situation regarding the entorhinal cortex,
considerable methodological difficulties might
contribute to this situation.

Early changes in AD beyond the medial temporal
lobe — Despite being known as a part of the limbic
system and essentially involved in memory, the
cingulate cortex has only recently become a focus
of structural neuroimaging studies in Alzheimer’s
disease and MCI. Two of the reviewed neuroimaging



studies in MCI, one using conventional ROI
analyses, the other based on VBM, reported
atrophy in the posterior cingulate in MCI (24, 59).
The remaining studies basically did not look for it.
This finding has support from recent studies in
AD. Mainly based on unbiased voxel-based ana-
lyses, a number of very recent studies reported
early structural changes in the posterior cingulate as
well as in the adjacent precuneus in early AD
(60, 61). Two studies found cingulate atrophy in
presymptomatic mutation carriers with familial
AD (62, 63). One MCI study found pronounced
grey matter loss in temporoparietal areas in MCI
(59). In mild AD, the parietal lobe (64) and the
insular cortex (65) have been reported to be
atrophied.

Some of the reviewed studies in MCI reported
a rather unexpected global volume loss or global
brain damage in MCI (48, 59, 66—68). These
findings suggest more widespread brain tissue
changes and atrophy in MCI than previously
believed. However, the evidence is controversial
(24, 34, 46, 48, 53, 54). Despite occasional reports
of reduced grey matter or global brain volume
(34, 48), the magnitude of these studies imply that
global brain volume, white or grey matter atrophy
is not usually pronounced in MCI (24, 46, 53, 54).
However, studies suggesting more widespread
brain atrophy are supported by recent findings
in early AD (62, 65, 69). The controversy may be
caused by a high variability of global brain
atrophy in MCI. However, differences in global
brain volumes between MCI and demented pa-
tients (24, 46, 48, 53, 54) have been reported quite
consistently. Such findings suggest that the trans-
ition of MCI to dementia involves global brain
atrophy. Some longitudinal studies (26, 34, 70)
have supported this view and suggested a possible
predictive value of global brain volume with
regard to the further course of MCI. These
findings would be in keeping with the notion
that subjects with more widespread degenerative
changes are more likely to progress to AD.
However, they may also point towards nonspecific
volume reserve effects. The latter has been implied
by the finding of smaller intracranial and total
brain volumes in subjects with AD and MCI as
compared with controls (71), as well as by an
association between total brain volume and sub-
sequent cognitive decline in initially unimpaired
elderly (34). However, the evidence for cerebral
reserve effects in neuroimaging studies is still
scarce. The additional predictive value of MRI
measures representing more global atrophy and
possibly volume reserve awaits further study in
prospective studies.

Neuroimaging in MCI

As early as in Braak stage III, mild neurofibr-
illary changes of magnocellular forebrain nuclei,
anterodorsal and reuniens nuclei of the thalamus,
and the hypothalamic tuberomamillary nucleus
may occur, while the basal portions of claustrum,
putamen and accumbens nucleus begin to be
affected in stage IV (13). The study of the histo-
logical substructures of the thalamus, basal ganglia
and the nucleus basalis Meynert is not possible
with currently used MRI protocols. However,
volumetric differences between normal controls
and early/mild AD have been demonstrated for
the substantia innominata (72, 73), and the thal-
amus (26, 74), caudate nucleus (60, 65, 75) and
putamen (62). Two of the reviewed MCI studies
reported pronounced atrophy in thalamus and
caudate nucleus (26, 59).

A very recent publication deserves special atten-
tion, because it introduced a new automated
method of anatomical labelling of brain structures
(26). Based on probabilistic information automat-
ically estimated from a manually labelled training
set, one of 37 different labels is assigned to each
voxel. When the method was applied to the initial
MR scans from 71 subjects with stable MCI (here
defined as subjects with initial CDR 0.5 who
remained in this category during 1-3-year follow-
ups) and 21 subjects with progressive MCI (initial
CDR 0.5, who converted to NINCDS probable
AD), all ventricular substructures (third, fourth,
lateral and inferior lateral ventricle), the right
hippocampus, left and right amygdala, and the left
thalamus differed between those two groups. Thus,
this study is the first to provide direct evidence for
a possible predictive value of the amygdala, the
thalamus, and enlargement of the cerebral ventri-
cles subjects with MCI.

Corpus callosum — The corpus callosum (CC) is the
main intracerebral fiber connection. Age-related
(76) and white matter lesion- (WML-) related (77)
volume reductions of the CC have been reported,
as well as significant CC atrophy in moderately to
severely demented patients with AD. In AD,
callosal atrophy has been discussed as a mechan-
ism to cause a cortico—cortical disconnection syn-
drome that contributes to the severity of dementia.
Little is known about how early such changes
occur in the course of AD, and cases with MCI
have not often been studied. In a cross-sectional
study from our own centre (78), a nonsignificant
5% reduction in total callosal area was observed in
27 subjects with questionable dementia compared
with normal subjects, and a significant reduction of
10% in 23 patients with mild dementia. The groups
were matched with regard to age and the severity of
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WMLs. All callosal measurements in questionable
dementia were intermediate between controls and
mild dementia, and no regionally pronounced
atrophy was noticed in either questionable or
mild dementia. The discrimination of normal
controls, questionable cases and dementia based
on CC measurements was poor. These findings are
supported by a longitudinal study in which the CC
size did not differ between incident AD cases (here
defined as nondemented cases at baseline who
developed cognitive decline or AD during follow-
up) and normal controls (79). These findings
suggest that, although a certain degree of CC
atrophy seems to occur at the transition between
normal aging and dementia, this does not seem to
be an early event in AD. While it has been
suggested that the CC may significantly contribute
to the rate of cognitive decline in cases with
established dementia, its predictive value in MCI
subjects remains to be investigated.

WMLs — Cerebrovascular disease — first of all
lacunar infarcts and ischaemic white matter lesions
—and Alzheimer pathology are likely to co-occur in
old age. There is evidence from postmortem studies
that cerebrovascular disease can enhance the
capacity of AD pathology, particularly in its
earliest stages, to promote dementia (21). Further-
more, vascular risk factors in mid-life have been
shown to be associated with a higher risk of late-
life cognitive impairment and AD (80).

Two recent publications have suggested that
WMLs on brain imaging are associated with an
increased risk of MCI (81) and conversion to
dementia in subjects with MCI (28). Further
support for an association between WMLs and
cognitive decline has been provided by large-scale
longitudinal studies focusing on cardiovascular
risk factors (82) and studies on old-age depression
(83).

Functional neuroimaging findings in early AD and MCI

Three main sites have been described in PET and
SPECT studies which seem to be affected early in
AD: the temporoparietal association cortex (84—
91), the posterior cingulate (32, 33, 92-96) and
the hippocampal-amygdaloid complex (32, 37, 94,
97-99).

Temporoparietal association cortex — Through nu-
merous studies, it has been well established that
patients with AD show typical regional deficits in
cortical metabolism and blood flow in posterior
parietal and temporal cortices (100). Early PET
studies (84, 85) reported increased hemispheric
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asymmetries in the association cortices in a longi-
tudinal study of 11 mildly impaired patients with
AD. These metabolic abnormalities usually pre-
ceded impairment of neocortically mediated func-
tions, such as attention, abstract reasoning and
visuospatial functions by 8-37 months. It was
concluded that the reduction in blood flow and
rCMRG in the association cortices seems to be
already pronounced in early disease stages when
the association cortices may be largely unaffected
by neurofibrillary pathology. This is consistent
with the functional disconnection hypothesis due
to pathological changes in projection neurones of
the entorhinal cortex (42).

Temporoparietal metabolic alterations have also
been reported in young cognitively normal subjects
who carry the ApoE4 epsilond allele, a well-
established genetic susceptibility factor for AD
(101), as well as years to decades before the
expected disease onset in asymptomatic mutation
carriers from pedigrees with familial forms of AD
(FAD) (86-91). While the latter studies may add
very valuable information to our knowledge about
preclinical AD, the data regarding the influence of
ApoE4 genotype leave open the possibility that
some changes detected by SPECT and PET reflect
features that are associated with inheritance of the
ApoE4 genotype rather than being predictive of
AD.

One recent study examined the predictive value
of temporoparietal rCMRG in patients with MCI.
This study suggests a predictive value of temporo-
parietal rCMRG in patients with MCI (102).

Posterior cingulate — For many years, the metabolic
abnormality in AD in the posterior cingulate has
rarely been studied and was only reported occa-
sionally (92). Recent topographical analysis of
PET images suggested that functional alterations
in the posterior cingulate cortex may occur in
patients with Alzheimer’s disease. The reduction in
rCMRG in the cingulate has been shown to
precede the changes in temporoparietal areas
(103) and to be already present in the preclinical
phase of AD (33). These findings have been
corroborated by a number of subsequent studies
with SPECT (32, 93-96). The human cingulate
seems to be essentially involved in memory pro-
cessing (92) and visual-spatial functions (104).
Little can be said about the extent to which the
atrophic changes of the cingulate that have been
shown in MCI and early AD could contribute to
metabolic and blood flow changes. A recent
longitudinal study with serial neuroimaging com-
prising 15 patients with mild AD suggests a
discordance between functional and structural



changes in the course of AD. While the medial
temporal lobe showed the most pronounced grey
matter loss within 1 year, the largest reduction in
rCBF was seen in the posterior cingulate. The
reduction in rCBF in the association cortices was
in a more posterior part than the reduction in grey
matter in this area (93).

Hippocampus and entorhinal cortex — While it was
long believed that metabolic changes occurred
primarily in association areas, methodological
advances revealed early metabolic and blood flow
changes in AD in the hippocampal-amygdaloid
complex (32, 94, 97-99) and the entorhinal cortex
(32, 37).

Johnson et al. reported that the initial SPECT
findings in the hippocampal-amygdaloid complex,
the posterior cingulate, the anterior thalamus and
the caudal portion of the anterior cingulate
predicted progression to dementia in 78% of 18
subjects with MCI at baseline (CDR 0.5) who
progressed to AD during the 2-year follow-up (94).

However, some findings suggest that, despite the
hippocampal formation being the site of the
earliest structural alterations, hypoperfusion in
these structures may not be the earliest change in
the progression of AD. Kitayama et al. studied 21
patients with mild AD (mean MMSE 23.3) and 16
controls and measured both the hippocampal grey
matter volume and hippocampal blood flow in the
same individuals. The hippocampal grey matter
volume was significantly smaller in mild AD, while
the hippocampal blood flow did not differ between
AD and controls (105). Kogure et al. performed a
serial SPECT study applying SPM and evaluated
the progression of rCBF abnormalities in 32
patients with initial MCI who declined to AD
during a mean follow-up interval of 15 months
(referred to as ‘early AD’). At baseline, the early
AD patients showed significantly decreased rCBF
in the posterior cingulate and precuneus. In the
follow-up SPECT study only, a selective reduction
was observed in the left hippocampus and para-
hippocampal gyrus (32).

QFEEG findings in subjects with MCI — Most studies
of quantitative EEG (QEEG) changes in AD have
used fast Fourier transformation (FFT) spectral
analysis. There is a general agreement that the
earliest changes in AD are an increase in theta
activity, accompanied by a decrease in beta activ-
ity, which are followed by a decrease in alpha
activity. Delta activity increases in the late disease
stages [for review, see (100)].

EEG studies in MCI subjects usually found that
theta power (107-109) as well as other EEG
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parameters (107, 110) and event-related potentials
(111) differed only significantly between controls
and mildly demented subjects (107-109). In MCI
subjects, these EEG parameters were mostly found
to be intermediate between normal controls and
dementia, but with considerable overlap. A recent
study confirmed this situation under rest condi-
tions, but found significant theta power differences
during haptic tasks between normal controls and
subjects with MCI (112). This implies that activa-
tion paradigms in EEG studies may increase the
sensitivity for cases at risk of developing AD. The
results of an event-related potential (ERP) study
using a word repetition paradigm point in the same
direction (113).

Furthermore, there is evidence from prospective
studies that low beta activity, high theta, low
alpha, slowed mean frequency and spatial aspects
of alpha frequency may be predictors of dementia
in subjects with MCI (110, 114, 115).

Cross-sectional classification rates

Based on cross-sectional differences in limbic
structures, mainly the hippocampus and entorhinal
cortex or parahippocampal gyrus, respectively, the
rate of correct cross-sectional classification of MCI
and normal controls was reported to be around
75% in several of these studies (Tables 3 and 4).
This probably reflects the transitional character of
MCI, in which an overlap with normal variants is
to be expected in cross-sectional studies. These
figures actually exceed the reported radiological
detection rates of the early pathological stages in
AD (entorhinal) stages, which were reported to be
just above 50% (116).

With regard to the ability of neuroimaging
‘markers’ to detect the early AD stages, the study
by Nagy et al. (116) deserves special attention. In
this prospective study of 86 cases with premortem
CT and autopsy-confirmed diagnosis, a minimum
width of the medial temporal lobe falling below the
S5th percentile was 95% sensitive but only 40%
specific for AD (116). While this CT measure was
positive in most of the cases in pathologically
advanced (isocortical) disease stages, it was only
positive in 12/21 patients in early (entorhinal)
disease stages, and also identified cases with non
AD-type destruction of the medial temporal lobe.
Furthermore, a negative radiological diagnosis in
entorhinal stages was more likely in cases with
pure AD-related pathology. This suggests that
hippocampal atrophy may be caused and/or aggra-
vated by other pathological processes than AD.

It may be argued that more accurate measure-
ments of hippocampal or entorhinal volume may
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improve the diagnostic value of radiological mark-
ers. However correlations between MR derived
hippocampal volumes and Braak stages are com-
parable with those found with linear measures (9,
116). Jack reported r* = 15% in 67 autopsy cases
with premortem MR, Nagy r* = 21%. In pure AD
cases these figures were 36% (9) and 33% (116).

Unlike the situation in structural neuroimaging
(Tables 3 and 4), cross-sectional findings that
compare MCI subjects with normal controls have
rarely been reported in SPECT and PET studies
(37, 117-119). This may be because of the difficul-
ties and legal restrictions in enrolling healthy
controls in such studies.

We found only three studies reporting significant
cross-sectional differences between MCI and con-
trols (32, 37, 117). A fourth study found interme-
diate values in rCMG in MCI subjects, but the
differences were not significant (119). The classifi-
cation rates reported by one of these studies
compare with findings based on structural neuroi-
maging (37) (Tables 3 and 4). However, there are
some studies with negative findings that also have
to be mentioned. In particular, studies that used
semiquantitative assessments and conventional
SPECT with cerebellum-to-region of interest
ratios, i.e. widely used clinical routine techniques,
do not support the use of this method in the early
diagnosis of AD (27, 118, 120) and found that CT
or MRI were superior to SPECT in discriminating
normal controls from MCI and dementia (118) and
progressive from stable MCI (27, 120). In contrast,
two recent large prospective studies that assessed
the diagnostic value of PET concluded from their
results that PET ratios and typical PET patterns
may be useful in detecting subjects with early
neurodegeneration and predicting the progression
of clinical symptoms in AD, even in cases with
questionable and/or mild dementia (121, 122). The
study by Herholtz et al., comprising 186 patients
with possible or probable AD, included 24 patients
with MCI defined by an MMSE score >24. The
risk of deterioration in these MCI patients was
reported to be 4.7 times higher if the neocortical
metabolism was low at baseline (122). Silverman
et al. analysed a subset of 55 patients who had
questionable and/or mild dementia at the time of
PET and received an ultimate pathological diagno-
sis. For this group, 41 (75%) of whom had AD, the
overall accuracy of PET was found to be §9%. This
was as high as for the whole group (n = 138) (121).

Combining structural and functional imaging

Because structural neuroimaging studies have
revealed atrophy in the same areas that are
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affected in functional modalities, the question
may be raised as to which are the first changes to
occur.

The most convincing evidence for the notion
that the earliest alterations in AD can be detected
with functional modalities derives from prospect-
ive studies of asymptomatic mutation carriers of
encoded APP and presenilin mutations causing
FAD (not shown in Tables 3-5) (87, 89, 90). In
these studies, reduced temporal lobe glucose
metabolism preceded the development of subject-
ive and objective cognitive dysfunction (87), as
well as the first detectable structural changes in
the medial temporal lobe (90). The clearest change
related to the development of clinical AD was a
reduction of rCBF in the basal and lateral
temporal lobe (89).

Another interesting question is whether the
combination of functional and structural modali-
ties may enhance the diagnostic gain of neuroi-
maging procedures as has been suggested by a few
studies (89, 105, 123).

Interestingly, this does not necessarily seem to be
the case. Two well-designed studies suggested that
the diagnostic accuracy of combined measures
might even be lower, particularly in very mild
AD or dubious cases (116, 118).

Scheltens et al. (118) examined 51 randomly
selected elderly subjects from participants of an
epidemiological study in Amsterdam. The sample
included 22 subjects with MCI (‘minimal demen-
tia’). The temporoparietal/cerebellar SPECT ratios
did not differ over cognitive stages and had a
sensitivity of 30% and specificity of 71%. The MRI
ratings of the medial temporal lobe differed signi-
ficantly over the groups and yielded a sensitivity
for AD of 70% and a specificity of 71%. The
combined sensitivity when both tests were positive
was lower than the individual sensitivity values of
MRI or of the SPECT values. The gain in
diagnostic certainty over the pretest probability
of AD was maximal when the combination of
SPECT and MRI was used. The gain in diagnostic
certainty over the pretest probability that AD was
absent was higher when only MRI findings were
considered. The authors concluded that the com-
bination of SPECT and MRI is only useful when a
diagnosis of AD is suspected clinically. When
serious doubt exists (high negative prior probabil-
ity), MRI suffices (118). Likewise, the analysis of
the first 86 longitudinally followed-up cases from
the OPTIMA neuroimaging study that came to
autopsy revealed that the combination of SPECT
and CT findings slightly reduced the number of
early AD cases identified as fulfilling the require-
ments of the diagnostic criteria (116).



Prognostic value of neuraimaging findings

A prognostic value of a neuroimaging measure-
ment may generally be presumed if a measurement
distinguishes subjects who remained stable (stable
MCI) from those who progressed to dementia
and/or AD (progressive MCI) over a variable
follow-up interval (in most studies, between 2 and
4 years). Such a distinction may be defined by a
baseline difference in one or more measurements,
by classification rates given from discriminant
function or regression analysis, or by an increased
hazard ratio. Different statistical approaches may
yield differing results. Furthermore, being ‘stable
MCT’ does not necessarily rule out the presence of
AD, neither does the progression of MCI to mild
dementia fully validate that AD was the underlying
reason. This might introduce error and variations
in the findings from different studies. From the
point of view of an individual patient and his or
her relatives, the crucial point is whether the
condition will progress or remain stable. Therefore,
at least in part, the specificity of a neuroimaging
finding can be neglected as long as it only predicts
the further course of cognitive impairment with
high certainty.

A number of longitudinal studies have found a
prognostic value of hippocampal (27, 31, 34, 35,
44, 124, 125) and entorhinal cortex atrophy (31, 47)
in MCI with regard to subsequent dementia
and/or cognitive decline. Taking the findings in
structural imaging studies together, the existing
prediction studies clearly point in the direction
that, although the presence of hippocampal and
entorhinal cortex atrophy increases the risk of
subsequent dementia, such measures alone would
not yield the required prognostic accuracy. In
particular neocortical areas in the temporal and
parietal lobe (24, 126) as well as the cingulate
cortex (24), and possibly global brain atrophy (34,
70) were found to be predictors with additional
value.

Some PET and SPECT studies suggested that
metabolic abnormalities and blood flow reductions
that typically occur in temporoparietal areas (102,
117), the posterior cingulate (94-96) and the
hippocampal formation (94) may predict dementia
in subjects with MCI with similar predictive
accuracy to that of structural measures. Longitud-
inal EEG studies suggest a prognostic value of
several aspects of quantitative EEG that is com-
parable with the results from structural and func-
tional neuroimaging (110, 114, 115).

Based on neuroimaging alone, accurate predic-
tion rates between 74% (47) and 93% (126) have
been reported. However, to be useful in clinical
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practice, neuroimaging studies should prove
their value against more simple clinical and less
expensive neuropsychological assessments. In
population-based settings, even such simple meas-
ures as the MMSE score have been shown to have
considerable power as predictors of dementia
(Palmer et al., in press; Riedel-Heller, personal
communication). Only a minority of the neuro-
imaging studies (which are listed in Table 5)
reported the value of neuroimaging findings in
direct comparison with simple screening tests and
neuropsychological data (31, 34, 102, 115, 124,
125). In the studies by Visser et al. (31, 125),
measurements of hippocampus and temporal lobe
atrophy provided valuable information in addition
to memory performance. In the latter study, the
delayed memory score predicted cognitive decline
with 73% sensitivity and 67% specificity in a model
that included age. The inclusion of the hippocam-
pus increased the accuracy of the predictive model
to 100%. Similar findings were reported by Arnaiz
et al. (102). In their study, 20 patients with MCI
were followed over 3 years. The nine patients with
progressive MCI who were diagnosed with AD at
follow-up had a significantly lower rCMRG in the
left parietotemporal cortex and lower scores on
three neuropsychological tests than those who
remained stable. Regional (left temporoparietal)
CMRG and block design were the most effective
predictors of progression to AD and correctly
classified 90% of the subjects when combined,
whereas rTCMRG and neuropsychology alone cor-
rectly classified only 75% and 65% respectively
(102). The MMSE was found to lack significance
against EEG as a predictor in the study by Jelic
et al. (115). A subsequent analysis of our own data
— which is not part of the original publication (28)
— revealed that, while the subscores of a cognitive
screening test (SIDAM) were significant predictors
of dementia, the addition of CT data increased the
predictive accuracy.

It remains to be shown how far additional
pathological features, such as WMLs and infarcts,
may alter the prognosis of MCI. The recent
evolvement of automated techniques to detect
and quantify WMLs (81, 127, 128) will help to
tackle this important question in dementia
research. So far, only one of the reviewed studies
with a clear focus on MCI included WML severity
together with atrophy measures in the analyses
(28). Another longitudinal study included 29
patients with MCI of the vascular type (MCI-V),
based on modified criteria for subcortical vascular
dementia, and 14 with degenerative MCI, based
on Petersen’s criteria. During a mean follow-up
interval of 32 months, patients with MCI-V were
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considerably more likely to be dead, in nursing
home placement and to have undergone cognitive
or functional decline (129).

Serial studies: pathogenetic madels in vivo. Is it possible
to monitor disease progression?

Few serial studies monitoring the time sequence of
brain changes have been conducted in AD and
MCI. They may be particularly helpful to answer
the question of how the structural changes in AD
evolve. Furthermore, they may help to compare
the capacity of different imaging facilities.

The evolution of structural changes — Earlier studies
focused on changes in medial temporal lobe
structures. In presymptomatic mutation carriers
with familial AD, an asymmetric annual hippo-
campal volume loss of up to 8% has been reported
(130). Taking together the results from studies on
mutation carriers in the presymptomatic phase (90,
130), longitudinal studies on MCI (35) and AD (63,
131), one may presume that a more pronounced
hippocampal atrophy occurs in the years preceding
the onset of dementia, whereas the volume loss is
less pronounced and may even reach a plateau in
the later stages of the disease. The results underline
the usefulness of hippocampal measurements in an
early, preclinical diagnosis of AD. Initial optimism
that serial hippocampal measurements could also
provide a useful tool for monitoring disease
progression — for example, during the treatment
with a disease-modifying drug — has been opposed
by the obvious difficulties in measuring the rela-
tively small hippocampal volume changes reliably
over time. However, recent studies have demon-
strated the usefulness of whole-brain segmentation
techniques, such as fluid registration and related
techniques, which allow a more accurate and
reliable measurement of disease progression (62,
63, 132).

The evolution of functional changes — The time
sequence of functional changes has been rarely
examined. The findings by Wahlund et al. (90) and
Kogure et al. (32) have been discussed earlier in
this review article.

Aspects of specificity

Most studies that assessed the brain changes
associated with ‘normal aging’ reported some
degree of time-dependent brain atrophy, even in
the absence of cognitive impairment that might
involve the same brain regions as AD-related
brain changes, i.e. the hippocampus, as well as
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more global brain atrophy (133-136). Beyond the
obviously problematic distinction between normal
age-related changes and AD, the question of the
specificity of typical neuroimaging findings in
MCI with regard to AD and other dementia
disorders has not yet been addressed. Clinical
criteria for prodromal frontotemporal dementia,
dementia with Lewy bodies, vascular dementia
and other dementia diseases are lacking. It is
doubtful whether it will be possible and necessary
to develop such criteria, because, even in cases
which meet current consensus criteria for fronto-
temporal dementia or dementia with Lewy bodies,
the correlation with the pathologically verified
diagnosis has been low (8) and no pharmaceutical
treatments other than those used for AD can be
offered to date [for discussion, see also Jelic &
Winblad (6)]. Neuroimaging studies that included
cases with fully developed AD and other dementia
disorders revealed that, despite a large overlap
between the disease groups (for example, with
regard to the quantitative degree of hippocampal
atrophy) (137), there might be topographically
specific patterns of change that may help to
distinguish FTD from AD (138-141). With regard
to vascular dementia and AD, it has become
clearer that the two pathologies may overlap and
exert additive effects to cause dementia and
possibly hippocampal atrophy in subjects with
mild Alzheimer pathology (116, 142). Such find-
ings support the usefulness of a broad concept
of MCI rather than subdefinitions for specific
underlying diseases. Even if the topographic-
morphological hallmarks of MCI, such as atrophy
of the hippocampal formation, are considered to
be nonspecific with regard to the underlying
aetiology and pathology, they may all result in a
similar clinical syndrome and may be classified as
a group of ‘hippocampal dementias’.

Future perspectives

New neuroimaging facilities, such as unbiased
voxel-based analyses, the visualization of plaques
and tangles, functional MRI paradigms and a
number of different MR applications, such as MR
spectroscopy and other MR applications may
substantially support the progress in the field of
MCI research in the near future.

Future research may, in particular, focus on
useful measures that distinguish early neurodegen-
erative disorders from each other. More studies
are needed that compare different neuroimag-
ing facilities with each other, as well as with
alternative diagnostic strategies such as clinical,
neuropsychological and biochemical assessments.



Summarizing remarks and conclusions

Structural MRI and CT, SPECT, PET and QEEG
are the most commonly studied imaging proce-
dures in patients with MCI.

In a number of neuroimaging studies com-
prising mainly clinic-based but demographically
heterogeneous samples, it has been shown that
structural and functional changes are already
present in the phase that precedes the onset of
overt dementia. Structural changes in MCI and
early AD seem to be pronounced in medial
temporal lobe structures, particularly in the
entorhinal cortex and hippocampus. The earliest
functional changes seem to involve the posterior
cingulate cortex, the hippocampal formation and
temporoparietal association areas. The most
important EEG change seems to be an increase
in theta frequency.

No single neuroimaging ‘marker’ for AD has
been identified to date. As the pathological
hallmarks of the disease process, disease-related
neuroimaging findings are quantitative rather
than qualitative in nature. A certain overlap
between cognitively normal and diseased subjects
as well as between different dementia disorders
will always be present. With regard to the early
diagnosis of a dementia disorder, a higher
sensitivity will thus result in a lower specificity
and vice versa.

While the presence of hippocampal and ento-
rhinal cortex atrophy in subjects with MCI is a
well-established risk factor for the development of
AD, the data are inconclusive with regard to their
value as predictors in an individual case. The
volumes of other brain regions that are typically
affected in more advanced cases with AD, as well
as more widespread atrophic changes, may add to
the predictive value of medial temporal lobe
atrophy.

The existing studies suggest that neuroimaging
facilities have the potential to become valuable
tools in the early diagnosis of AD beyond the
exclusionary approach. However, to establish
their value in clinical routine, studies involving
larger, preferably population-based samples with
longitudinal follow-up are needed. Therefore,
not only the accuracy, but also the practicability
and cost-effectiveness will be important aspects
for the choice of a diagnostic procedure. In
particular, the value of neuroimaging against
clinical, neuropsychological and biochemical
assessments in large representative (i.e. clinically
heterogeneous) samples, and the complementary
value of the various facilities remains to be
demonstrated.

Neuroimaging in MCI

Appendix: Commonly used terms and abbreviations

18F-fludeoxyglucose FDG
Cerebrospinal fluid CSF
Computed tomography CT
Electroencephalography EEG
Event-related potentials ERP
Hexamethylpropylene amine oxime HMPAO
Magentization transfer imaging MTI
Neurofibrillary tangles NFT
Nuclear magnetic resonance
imagingMRI
Positron emission tomography PET
Proton magnetic resonance '"H MRS
spectroscopy
Regional cerebral blood flow rCBF
Regional cortical metabolic rCMRG
rate of glucose
Senile plaques Sp
Single-photon emission computed SPECT
tomography
Analysis methods
Co-registration with MRI (154)
Singular value decomposition SVD (94)

Statistical parametric mapping SPM
Three-dimensional stereotactic 3D SSP (155)
surface projection

Voxel-based morphometry VBM
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